

The Brain is the Client:

Designing a Back Door into the Nervous System

Douglas H. Smith Department of Neurosurgery Center for Brain Injury and Repair University of Pennsylvania

Brain-machine interface

No convention, no consensus

"War of the Currents"

Thomas Edison

DC vs. AC

Nikola Tesla

Where and what is a neural interface?

The Matrix: Hooking into the Net

Where do you connect?

Do you cause damage?

Hard and/or sharp: BAD

Wet and juicy familiar tissue:

Cater to the promiscuous nature of the nervous system

The brain is the client; give it what it wants.

Direct or Indirect interface?

Harness as much of the processing power of the nervous system as possible

i.e., interface as far away from the brain as possible

Must have two way communication: Transfer sensory and motor signals

Elephant in the room

One-way exception:

Sensory devices -Vision and Hearing

Still, interface should be as far away as possible from final processing site in the brain

Engineering a nervous tissue interface via stretch growth of integrated axon tracts

How fast, and to what length can you stretch an axon without damage?

Current Dogma:

Neurofilament protein transport = 1-2 mm/day

Axon outgrowth in culture = 1-2 mm/day

Nerve regrowth in vivo = 1-2 mm/day

A giraffe's neck can grow by 20mm a day!

Baobabfarm, 200

Blue whales grow 40mm a day!

Kato, 1994

Deer antler sensory axons grow up to 18mm a day! Grav et al. 1992

During development, there must be growth along the central portion of integrated axon tracts

Stretch Growth Concept

2 days of elongation

Parallel alignment of stretch-grown axon fascicles

Not jellyfish approx. 1x10⁶ stretch-grown axons

Conductance across elongated axons

Extreme growth of axons: Rate of 1cm/day I BEECM

Maintain function

Tension can be good for your nerves

Can mechanical elongation of integrated axons be exploited to restore function?

Can current approaches bridge spinal cord injury lesions often greater than 3cm?

Transplant of Stretch-Grown Nerves For Spinal Cord Injury

Peripheral nerve repair with stretch-grown axons/ nervous tissue constructs

Nervous tissue construct: Stretch-grown axons encased in collagen and inserted in PGA tube

Nervous tissue construct repair of sciatic nerve

Nervous Tissue Construct 4mo Post-Transplantation

Red = host axons Green = graft axons

Cross Section Through Graft -Myelinated Axons 4mo Post-Transplant

neurofilament myelin basic protein

Electrophysiological conduction through transplanted nervous tissue construct

Neurons Grown on a Flexible Multi-Electrode Array

Gross Anatomy -Flexible Multi-Electrode Array 2wks Post-Transplant

Human DRG neurons harvested from a patient

Surviving in culture for at least 3 months

Stretch-grown to produce human nervous tissue constructs

Interface check-list

Integrate with nervous system

Demonstrate electrical signaling

Design for two-way communication

Control a prosthetic device

Enable proprioception

Learning Curve

"That's amazing-I was just thinking the same thing."

The Elongators:

